Histograms¶
Histograms are essential for understanding data distributions, identifying patterns like skewness and multimodality, and comparing distributions across groups. Rekha’s histograms offer flexible binning, density estimation, and comparison features.
Basic Usage¶
import rekha as rk
import pandas as pd
import numpy as np
# Simple histogram
data = np.random.normal(50, 15, 1000)
df = pd.DataFrame({'values': data})
fig = rk.histogram(df, x='values', title='Distribution of Values')
fig.show()
Examples Gallery¶
Basic Histogram¶


Simple distribution visualization:
import rekha as rk
import numpy as np
# Generate normal distribution
np.random.seed(42)
data = np.random.normal(100, 15, 1000)
df = pd.DataFrame({'values': data})
fig = rk.histogram(
data=df,
x='values',
title='Normal Distribution',
labels={'values': 'Value'},
nbins=30
)
Distribution Comparison¶


Compare multiple distributions side by side:
# Create multiple distributions for comparison
data_long = pd.melt(
df[['normal', 'skewed_right']],
var_name='distribution',
value_name='value'
)
fig = rk.histogram(
data=data_long,
x='value',
facet_col='distribution',
title='Distribution Comparison',
labels={'value': 'Value', 'distribution': 'Type'},
nbins=25
)
Grouped by Category¶


Compare distributions across groups:
fig = rk.histogram(
data=df_iris,
x='petal_length',
color='species',
title='Petal Length by Species',
labels={'petal_length': 'Petal Length (cm)', 'species': 'Species'},
alpha=0.8,
nbins=20
)
Parameters¶
See the API Reference for complete parameter documentation.
See Also¶
Box Plots - For statistical summaries
CDF Plots - For cumulative distributions
API Reference - Complete parameter documentation